Logistic map
#Logistic map function-Bifurcation Diagram
from pylab import *
def f(x):
return c*x*(1-x)
c,cf=2,3.9 #2 is initail value of control para, 3.9 final vlaue
x=.2
xpt=[]
ypt=[]
while(c<=cf):
for i in range(100):
xpt.append(c)
ypt.append(f(x))
x=f(x)
c=c+.01
plot(xpt,ypt,'.')
xlabel('Control parameter (c)')
ylabel('Population (x)')
show()
Output
#Logistic map
from pylab import *
def f(c,x):
return c*x*(1-x)
ci,cf,n,g,x0=2,3.9,100,100,.2
cs=(cf-ci)/1000.0
lx,lc=[],[]
for c in arange(ci,cf,cs):
x=x0
for i in range(g):
x=f(c,x)
p=0
while p<n:
x=f(c,x)
lc.append(c)
lx.append(x)
p+=1
print lx
print lc
xlabel('Control parameter')
ylabel('Population')
plot(lc,lx,'.')
show()
Output
Theory :
#yn+1=c*yn(1-yn)
from pylab import*
c=float(input('input control parameter'))
i=1
y=.2
while i<73:
y=c*y*(1-y)
i=i+1
print y
Values of yn for different values of control parameter:
from pylab import *
def f(c,x):
return c*x*(1-x)
ci,cf,n,g,x0=2,3.9,100,100,.2
cs=(cf-ci)/1000.0
lx,lc=[],[]
for c in arange(ci,cf,cs):
x=x0
for i in range(g):
x=f(c,x)
p=0
while p<n:
x=f(c,x)
lc.append(c)
lx.append(x)
p+=1
print lx
print lc
xlabel('Control parameter')
ylabel('Population')
plot(lc,lx,'.')
show()
Output
Theory :
#yn+1=c*yn(1-yn)
from pylab import*
c=float(input('input control parameter'))
i=1
y=.2
while i<73:
y=c*y*(1-y)
i=i+1
print y
Values of yn for different values of control parameter:
Comments
Post a Comment